MoonBit-Pearls-Choreographic-Programming-with-
Moonchor

ERNSHRREFRFRTRIEEREN, HP—EENAZERZSERNEZEZTERIEIZTD
PRI, oENIIESRERHEAEL. WIIERE, HE T E=ZRRIZIESIRHENER
MiEBES ., Choreographic Programming, BlhREIRRIZ, BT —MEEXNIA, RIFHFARE
REBEZITS5EFEMREIIENE—ZR, AEBITEAEZERSIIKHEIEZTS5E, RET
MpE TERIR .,

HENREEET M AENS RN E—2FA—MEHNREIES, FI2 Choral, FRER
5 Choral 2%, RAERRIFFREXTRAEFRFESZTS5EETRN JavaEF; E_ZFN
— 1 E, 540 HasChor, E#&F|F Haskell RURERSREETIN MR N RIZNFFSMER, FH%

EFRE Haskell WEZS, MoonBit 1 il FSERESHTHWEND
BN RIZRIE,

AN E £ MoonBit iIE S MM EIZ4ET2E moonchor, A Z MM FERFENER HIZAZOEBE
METHE,

SH: BIENA
ERNBE—BERA, MRESFMEE: TRNER, MANKOBENT:

ENCEE Y et -JAPR: IR B vl

KB EWRIEESIFERBHING;

LHRRERSBMLHEE;

MREZFREME, SERMEUEZEPHIFRBIEREFHRETHEA BAER;
&, REHRIE,

Z4iscm

?ﬂl‘]?fltl:T\?é/D\%EI')léEH*ﬁ, F\?&IB*&IB\\EEﬁ’ {EF send M recv FECEE TR IEFIEKSH
B. BBESGMNIIAN, BMNEENLIRNIRDINALMTNAE., ERTNXENAZA], K
NRIZEEFE— LR ENFILE:

fn get_title() — String {
"Homotopy Type Theory"

}

fn get_price(title : String) — Int {
50
}

fn get_budget() — Int {
100
}

fn get_delivery_date(title : String) — String {
"2025-10-01"
}

enum Role {
Buyer
Seller

async fn[T] send(msg : T, target : Role) — Unit {

}

async fn[T] recv(source : Role) — T {

ERINMABWTF:

async fn book_buyer() — Unit {
let title = get_title()
send(title, Seller)
let price = recv(Seller)
if price < get_budget() {
send(true, Seller)
let delivery_date = recv(Seller)
println("The book will be delivered on: \{delivery_date}")
} else {
send(false, Seller)

SEERAIN AT

async fn book_seller() — Unit {
let title recv(Buyer)
let price = get_price(title)
send(price, Buyer)
let decision = recv(Buyer)
if decision {

}

let delivery_date = get_delivery_date(title)
send(delivery_date, Buyer)
}

XM TN AZEDE LT ER:

FTERIERERZE: 22 send M recv #EZERE, RBEIRIAMNZIHIRE -
i, ZARERIEREZE; [N, AIRERIIN. RFEIINIREREEITIHNEIR. M FE
FTENEXMERLR Y, ANRERTENEST send YN recv, REFHRET
HREAREH.

FIRESHIEH: A—XREFNED send IBARET, LRMERAESEINFGTT M
HER REBENZREN, ETIRERGENMA T, ZRBVES—EFFIHRWER., £
ARSI ER SERTE B

FEEXEAY: IRATEAEREAZRTEMLARE, DABIAHKIEZ—T Bool KA
HE . FENMEEREFERIELRMERAE if price < get_budget() M if
decision XM MUEEHERND X, MEX—4FRBRILEERIFHRILEN.

SEXL AR AREAZ AV — T BIAR I EIEHEIR R STIAIFTRIFA T T MRS D .
ETR, BAERERNEINRRNCUBR LR,

moonchor I
FRNERXEE, HMNTUBEIRIERNBESRE i, SAEILERIEREZXE AT
AEINZERILE . B {FEFA moonchor Y APl SEENX EFHEFHWER., &

moonchor 1, ABEENAN trait Location , N TIRMHEIFNESHUR, AENIEE, B

PR — T IRIFROREY, ZRBFEESIIM Location XA trait,

struct Buyer {} derive(Eq, Show, Hash)

impl @moonchor.Location for Buyer with name(_) {

}

"buyer"

struct Seller {} derive(Eq, Show, Hash)

impl @moonchor.Location for Seller with name(_) {

}

"seller"

let buyer : Buyer = Buyer::{ }

let seller : Seller = Seller::{ }

AIUER, BATEXH Buyer Ml Seller XBRGURTAFE, LM Location trait fEE
RABBREME— name Hi%, BE—PFHBENRBOBR, XD nane HEFEEE, E
MRERBNSNEY, HAEXRNRETARIARRSN, BRAROEFR. TENTEN
FAERERRNER, TUARSHEMISITIHER. BIMEEX T RIIERNERITI—ER
BTSN, URIHAKEXEETEE,

BTR, BMEXBENBIZOERE, EWIRIE— choreography:

async fn bookshop(ctx : @moonchor.ChoreoContext) — Unit {
let title_at_buyer = ctx.locally(buyer, _unwrapper = get_title())
let title_at_seller = ctx.comm(buyer, seller, title_at_buyer)
let price_at_seller = ctx.locally(seller, fn(unwrapper) {
let title = unwrapper.unwrap(title_at_seller)
get_price(title)
})
let price_at_buyer = ctx.comm(seller, buyer, price_at_seller)
let decision_at_buyer = ctx.locally(buyer, fn(unwrapper) {
let price = unwrapper.unwrap(price_at_buyer)
price < get_budget()
})
if ctx.broadcast(buyer, decision_at_buyer) {
let delivery_date_at_seller = ctx.locally(seller, unwrapper =
get_delivery_date(
unwrapper.unwrap(title_at_seller),
))
let delivery_date_at_buyer = ctx.comm(
seller, buyer, delivery_date_at_seller,
)
ctx.locally(buyer, fn(unwrapper) {
let delivery_date = unwrapper.unwrap(delivery_date_at_buyer)
println("The book will be delivered on \{delivery_date}")
})
> 1ignore

}

R EFHEHMERK, HNERTOH—T.

PRENHIZSEN ctx: @moonchor.ChoreoContext & moonchor AN FHIZHM EF TN, EEE
THEIRREEENAMNAERO. 8%, BIMER ctx.locally FIT—MXEXRACLE
EHATHIRIE get_title() . ctx.locally MNE—TSHEAE, E1TSHE—THE,
AENNEMEFTENTHNSH, REEHRERGEEN ctx.locally HIREME, EXE,
get_title() HYIR[EMER String B, 1M title_at_buyer HEEZE
@moonchor.Located[String, Buyer], RAXMEMUTEIRXTAE, LEREEREF

A, SfflBEEZRARPER title_at_buyer B, fRiFI=IREE, SHIFIR Buyer A Seller

TRE—NEE,

BTR, IRFERBBRIZALELR, BAMEA ctx.comm EEIMXMEE. ctx.comm BIZE
—MSHURRIZFERE, FETSHERREAR, F=TSHERIZNAST., BXE,
ctx.comm BYIR[EE title_at_seller HJEELFE @moonchor.Located[String, Seller],
RAXMEMNTERAR, IRERBEIT, ctx.comm SNAYEEIER send F recv , {BiX
B, XBRBATHRE: ctx.comm B@—MZEKRE, BRI AEMNESIHEEEE—TE
Bl 2) REENIRKENABXNASHERNIRCMELRERSE, A

@moonchor.Located[T, Sender] # @moonchor.Located[T, Receiver],

HAET, IRABBIERIIEEREPIONE. EX—FHMNBEIT ctx.locally (EEHBLaH]
BHSE unwrapper , XTSHE—THTH Located XKEBEBHIN R, ERNRBZZHHE
E—TMABERSE, BE(1@ET Unwrapper::unwrap HENEZENRIEEE 2O TIEN:
fn[T, L] Unwrapper::unwrap(_ : Unwrapper[L], v : Located[T, L]) = T, thFi=Z
18, ctx.locally(buyer, unwrapper = ...) HBY unwrapper BIZEEIZE
Unwrapper[Buyer], T title_at_seller BIZEEIZE Located[String, Seller], ALt
unwrapper.unwrap(title_at_seller) WIERERE String ., XMENTABENIATUEH
BIHR{ER title_at_seller MIABEERA title_at_buyer KERA,

Knowledge of Choice

EREZENRRED, EARRXELREE—TK#ER, UETHERNELMA—1/)NTRIRE,
aEhERERED, XA FRIE Knowledge of Choice (EIR4M1IR) . £ LEMIGIFH, LR
FENESEWLPE, MEXFTENELREEMWEHEE., HIMER ctx.broadcast KLY
X INEE,

ctx.broadcast ME—TSHERIZENAR, F_NTSHEEEXRZLMEEEABINE
Bo EEXMIFH, IRVNERPEEMNELREEWIFHE, AUIREBRZX—RE
decision_at_buyer @Y ctx.broadcast RIZELFIESS5E (EXEREFELER), AEHMN
&, X broadcast FIREMEE—TEBEEMIE Located E£E, XTBIREERUHKFIER
aFA, HEEEETNEEAMAEE unwrapper 8., AL, EMIEEI2FA MoonBit <5 A9
if FHPBURBEERERE, MMRIELEHRAEZRE if 2XHFEANEBENDS X,

MBFARIUNEY, ctx.broadcast BIEFEEE choreography [#E—"ME, EARYXAIN
[TH#E— Bool B HABTEEEEHERE, ENERMIAIMUNETF if £41849, e
METF while BERHEEMEECZTEAHINRNMS,

=i T

X#E— choreography EFIZ1TIE? moonchor 32t T run_choreo REEBI—1T
choreography, B#l, T MoonBit ZEintFE, RETRTER. IBEN TCP RSB35 iA

HREEROZ Ik, RLtB(TGEREBMMIZNRRT choreography WEIEIZITERE, 7T
ErECRBAT:

test "Blog: bookshop" {
let backend = @moonchor.make_local_backend([buyer, seller])
atoolkit.run_async(() = @moonchor.run_choreo(backend, bookshop, buyer)

)

atoolkit.run_async(() = @moonchor.run_choreo(backend, bookshop, seller)

)
}

EREBEDTHEMHE, DRELRMERLHITE—T choreography, thETAIEAZH,
bookshop XM REMIREIR (LHEFRAN EPP, immi%sY) 7 TEXRKRy M TERRR FD5T
AERIRRA, £ LEEMBFIFH, run_choreo ME—TSEE—T Backend EEHNR, EiR
HT RN BIEFMBNEEEENH, FN1MEA make_local_backend REBIET —1MAHE
i (REMNIRIRZEIR MoonBit Z/aimE1E), XM EinA] AEARMHAZFIEIT, FA peter-
jerry-ye/async/channel IRERVEE API fENBEEM. ER3K, moonchor BRI EZ
AfEImSEEL, BIa0 HTTP,

API FNEf o [RIE

BAIEEIDERINIIZN moonchor BT HIHM TR, Tk, FAIENSIANIRIBZIEY API LA
h—E2BREIN AP, FENMABENNEDRE,

e

7£ moonchor 1, FA1EITSLI Location X trait FENXAE®., 1% trait BIERAIT:

pub(open) trait Location: Show + Hash {
name(Self) — String

}
Location K trait object LI T Eq:

impl Eq for &Location with op_equal(self, other) {
self.name() = other.name()

}

MRMTABHN name HEREMERINFNS, BAENBINIZE—THAR, SUMRAZE. &
AIEMERESRETAEN, name HERHRLZREE. HENR, PILAFHEREBEHELRR
EARRRA—AENE, IMFMELENSERNAENEAHEREN, WHEBESFH, X

KBAEAL—T, IRFELGNLGESTIFIER, FERFERS [ZREIRIERRNSER
IRAB. L, SHRRBET:

struct DynamicBuyer {
id : String
} derive(Eq, Show, Hash)

impl @moonchor.Location for DynamicBuyer with name(self) {
"buyer-\{self.id}"
}

Located Values

& choreography HeERN BT ABSENE, REKNEEEMNFERX B MERZE
NFH A28, & moonchor A, XA Located[T, L] XMRBRRUTAE L &
RN T KA.

type Located[T, L]

type Unwrapper[L]

FIEE— Located BRI EIET ChoreoContext :: locally B ChoreoContext :: comm ,
XA R =IRE— Located fH,

EB— Located EMNAXNEET Unwrapper XHRA) unwrap A&, XEARABTELIENBE
NMAREZERI T, RAMEER,

BEbitE
BNEGFh BN HEE LRI API B9 ChoreoContext :: locally , ERFEETHEBLHIT
— 1 EENTERE. HERWT:

type ChoreoContext

fn[T, L : Location] locally(

self : ChoreoContext,

location : L,

computation : (Unwrapper[L]) — T
) — Located[T, L] {

}

Z APl RIRETE location XMABLMNIT computation XPMHE, HBITEERBER—
Located Value, computation HIBHE—ZHE—THRERNR, XER Unwrapper[L], E
FEABPATIE Located[T, L] XEWEMREMK T L8, X7 AP EBERFITENERY
EIETAREL, MRZEREEZACKHER. IRHETEEEABKERXME, HAXD
REsRLEEEARENE, FESRSIRE.

B
ChoreoContext :: comm API BFE—TMEM—THERZIZ—1TAR, HERWT:

trait Message: ToJson + @json.FromJson {}

async fn[T : Message, From : Location, To : Location] comm(
self : ChoreoContext,
from : From,
to : To,
value : Located[T, From]
) = Located[T, Tol {

}

RFENMEZWEEERERFERIICHRFFIEEE, £ moonchor BRIRISEINAR, {E£F3 Json M
FFTREVEHBOPER AR, XBE—TAFEIEXINAT, ARKIEZEESRAIEL
W,

ChoreoContext :: comm H=1RESH, FT7TEREVHERRE, TEREHNEEANEE
KB From F To . XM MERBIMIGFIIN T1%F5ER from S8, to TE, UKk value S
MIREMERIRE, RFRIET REDTREASEZEEFIIE. RFFICRREREE, FRRIE
RIFENEFWITADASEN, FERZ2SHIE.

[H5
HEBEZABRZEEEZE—MERN, F{HFA ChoreoContext ::broadcast APIItENAE
B—MEl BAEHEHEAER., HERWT:

async fn[T : Message, L : Location] ChoreoContext ::broadcast(
self : ChoreoContext,
loc : L,
value : Located[T, L]

) > T {

}

[EMEER APLRIBM, BRTRKRAE:

[THEAEEIERIEWANAE, BRIARi% choreography PRIFFERE;
[T#EHIREEHIE Located Value, M2HEARBHIER,

XMW MFRBRTT BB FEBRe#eeisRIE—™E, MM choreography BTHZEXS
Z B TIREMAZBERTE ChoreoContext :: locally FiERER, FIWIEBRIEFIFH, EZKH
SRFENW TBEMI) X—REARIIR, BREETRZDART—H,

[EimAlE1T

iZ1T—" choreography FJ API 21 F:

type Backend
typealias async (ChoreoContext) — T as Choreo[T]

async fn[T, L : Location] run_choreo(
backend : Backend,
choreography : Choreol[T],
role : L

) > T {

}

EEK=1"28: — 1 EiR. —THFP%SM choreography lI—MFETHAE. BREET
BIENHRIRRZI, FiaTRABNRIEEX T choreography BEEMMIERNIT. LLAIZA]
HBIFR, IRNEFFRELMEE—T Buyer RERE, MERFREE Seller KEH
(=8

moonchor &t 7 — M EFHiZFEE A1 fE i
fn make_local_backend(locations : Array[&Location]) — Backend {

}

ZTRBAZHRTNMEABZEMEEEEE, RHEEMFIBELI, B send M recv 7
B, REAHEIRREATRAAREFMIFREEND NN AEER, EErISEIErEikE,
RERB TETRENNERE API TIHIEEFIE, moonchor FEERIABTHMED HlERF
I

(AIEENE) RAHIEAR: ZEIZ4S KVStore

TEATHR, BATRRIT—1TEE#RZESG], {£A moonchor LI ZEIZAR] KVStore, FAMKAR
1§ moonchor #J#Z/0x API, B2 5 FlIF MoonBit #9;Z BUl—F N R ECRIR R ER

moonchor FH{THEI R mIZFEZRIABES

BT

BAM—EEELIE, EXEFFin Client MRS5S Server BT AE:
struct Server {} derive(Eq, Hash, Show)
struct Client {} derive(Eq, Hash, Show)

impl @moonchor.Location for Server with name(_) {
"server"

}

impl @moonchor.Location for Client with name(_) {
"client"

}

let server : Server

Server::{ }

let client : Client

Client::{ }

EII— KVStore, #lal Redis, HNIEEXLMHEEARNFHNZEO: get # put (XJN Redis B9
set) , SREEMTIHMER— Map HUEEEZMEREX:

struct ServerState {
db : Map[String, Int]
}

fn ServerState::new() — ServerState {
{ db: {} }
}

X$F KVStore =, get fl put IHREZFFIHEIT MK RIZT R, ERKREKAET, HNHS
MERBINIERZN 4. AAIUBNEREEX —TIBEREE Request , EBE TIHERNEENS

e

enum Request {
Get(String)
Put(String, Int)
} derive(ToJson, FromJson)

RNTHE, FAIWY KVStore A45F string ERHEM 1nt RBNE, EBETE, HIITEX—T
Response A, FAFRRARSB2[_{IXIERMA :

typealias Int? as Response

MR E— T AHERNEE, HiEKE Put B, MMNZ None ; HIBEKZE Get BY, MM EXINEERY
B2, RBEAEFE, NNIKNA None ,

fn handle_request(state : ServerState, request : Request) — Response {
match request {
Request :: Get(key) = state.db.get(key)
Request :: Put(key, value) = {
state.db[key] = value
None

BN BEMEEXFHTRE put 1 get BIBFIRARIEKINEIE. ENEMNEBEDFIZ:
£ Client &M RIEXR, BIRBEXT;

BIE R K%L Server;
Server {£F handle_request BREAMEIENK;
R Rz &[] Client,

FIAER], put 1 get RERVIEHEERMAEY, BATAINE 2. 3. 4 =P IEMRA—TE

#, NUFE access_server ,

async fn put_vi(

ctx : amoonchor.ChoreoContext,

state_at_server : @moonchor.lLocated[ServerState, Server],

key : String,

value : Int
) = Unit {

let request = ctx.locally(client, _unwrapper = Request::Put(key,
value))

access_server_vi(ctx, request, state_at_server) [ignore

}

async fn get_vi(
ctx : amoonchor.ChoreoContext,
state_at_server : @moonchor.lLocated[ServerState, Server],
key : String

) — amoonchor.Located[Response, Client] {
let request = ctx.locally(client, _unwrapper = Request::Get(key))
access_server_vl(ctx, request, state_at_server)

}

async fn access_server_vi(
ctx : amoonchor.ChoreoContext,
request : @moonchor.Located[Request, Client],
state_at_server : @moonchor.lLocated[ServerState, Server]
) — amoonchor.Located[Response, Client] {
let request_at_server = ctx.comm(client, server, request)
let response = ctx.locally(server, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_server)
let state = unwrapper.unwrap(state_at_server)
handle_request(state, request)

b

ctx.comm(server, client, response)

XHEFATHY KVStore FiZEm T . FATRIAE— B8 AT choreography X E :

async fn kvstore_vil(ctx : @moonchor.ChoreoContext) — Unit {
let state_at_server = ctx.locally(server, _unwrapper =
ServerState:: new())
put_vi(ctx, state_at_server, "keyl", 42)
put_vi(ctx, state_at_server, "key2", 41)
let vl_at_client = get_vi(ctx, state_at_server, "keyl")
let v2_at_client = get_vi(ctx, state_at_server, "key2")
ctx.locally(client, fn(unwrapper) {
let vl = unwrapper.unwrap(vl_at_client).unwrap()
let v2 = unwrapper.unwrap(v2_at_client).unwrap()
if vl + v2 = 83 {
println("The server is working correctly")
} else {
panic()

}
b

> ignore

test "kvstore vi1" {
let backend = @moonchor.make local_backend([server, client])
atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore vi,
server))
atoolkit.run_async(() = @moonchor.run_choreo(backend, kvstore_vi,

client))
}

XTEFNEXE, DAFE "keyl" M "key2" ZHEM N IF 42 T 41, ABMIRSZRZIRBUZA T
EANEENNNEEEFT 83, WRBMEM—TEKIRE None ETELERTE 83, BEFM

= panic,
PP

IMTE, ERA KVStore IBNNFEINEE. REPNTHEMEWE—TMEIE, E5ERIEEFEHEE
ROESE, HELIE Get IERISIGEEMEERI—ENILE,

BATAMBIERE—THNAE:

struct Backup {} derive(Eq, Hash, Show)

impl @moonchor.Location for Backup with name(_) {
"backup"

}

let backup : Backup = Backup::{ }

EX—MEHATRE-HE: JTEHESNEFEHANNLEE N, MEF—H,
panic,

fn check_consistency(responses : Array[Response]) — Unit {
match responses.pop() {
None = return
Some(f) =
for res in responses {
if res = f {
panic()
}
}

HEWASBOANBEAEEMBNR, REA access_server RENFIEINXBIAHLIEENT, FHH0
access_server_v2 HUIBEERE, Server EFWRNEKG, E1BEKIE &% Backup; 7AfG Server #]
Backup 7 5l4bFEIEK; Backup LM ESEIEKEA[EIZE Server, Server IR ZERIAIT—IHILE

¥,

async fn put_v2(

ctx : amoonchor.ChoreoContext,

state_at_server : @moonchor.Located[ServerState, Server],

state_at_backup : @moonchor.Located[ServerState, Backup],

key : String,

value : Int
) — Unit {

let request = ctx.locally(client, _unwrapper = Request::Put(key,
value))

access_server_v2(ctx, request, state_at_server, state_at_backup) D
ignore

}

async fn get_v2(
ctx : amoonchor.ChoreoContext,
state_at_server : @moonchor.Located[ServerState, Server],
state_at_backup : @moonchor.Located[ServerState, Backup],
key : String

) — amoonchor.Located[Response, Client] {
let request = ctx.locally(client, _unwrapper = Request::Get(key))
access_server_v2(ctx, request, state_at_server, state_at_backup)

async fn access_server_v2(
ctx : amoonchor.ChoreoContext,
request : @moonchor.Located[Request, Client],
state_at_server : @moonchor.lLocated[ServerState, Server],
state_at_backup : @moonchor.Located[ServerState, Backup]
) — amoonchor.Located[Response, Client] {
let request_at_server = ctx.comm(client, server, request)
let request_at_backup ctx.comm(server, backup, request_at_server)
let response_at_backup = ctx.locally(backup, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_backup)
let state = unwrapper.unwrap(state_at_backup)
handle_request(state, request)
)
let backup_response_at_server = ctx.comm(backup, server,
response_at_backup)
let response_at_server = ctx.locally(server, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_server)
let state = unwrapper.unwrap(state_at_server)
let response = handle_request(state, request)
let backup_response = unwrapper.unwrap(backup_response_at_server)
check_consistency([response, backup_response])
response

b

ctx.comm(server, client, response_at_server)

}

FNA—4, AT AE—1E 8 choreography EMEIHE :

async fn kvstore_v2(ctx : @moonchor.ChoreoContext) — Unit {
let state_at_server = ctx.locally(server, _unwrapper =
ServerState ::new())
let state_at_backup = ctx.locally(backup, _unwrapper =
ServerState::new())
put_v2(ctx, state_at_server, state_at_backup, "keyl", 42)
put_v2(ctx, state_at_server, state_at_backup, "key2", 41)
let vl_at_client = get_v2(ctx, state_at_server, state_at_backup, "keyl")
let v2_at_client = get_v2(ctx, state_at_server, state_at_backup, "key2")
ctx.locally(client, fn(unwrapper) {
let vl = unwrapper.unwrap(vl_at_client).unwrap()
let v2 = unwrapper.unwrap(v2_at_client).unwrap()
if vl + v2 = 83 {
println("The server is working correctly")
} else {
panic()
}
)
> ignore

}

test "kvstore 2.0" {

let backend = @moonchor.make_local_backend([server, client, backup])

@toolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_v2,
server))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_ v2,
client))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore v2,

backup))
}
F A S R &S E IR
ENEIASIIRZAR, HIT —L : Server AMEIFKR ., FMIEKR. MEER UM

BRET —iE.

#F MoonBit IS KERETE, HANTNEEFIREBMEALEIRZHMREFE, HMDHT—
T, FfAREFIRE? EMNZEa—1IE, ARSHE2FERENETNBETEIRLEENS
N, XEET, WE-TETREOIRERSENERITRE, XFNE, HMMEEILEHIRE

RN EIERAVER D, M BERER S ERERNE TR 2 B# TR, HNETIMNEFISHE
B

SR, AXHFNETIRIEZIFEERN, FEREFTUMEMAIERZRHBLR. E2EXT
B, BT ELEE, A moonchor NYRIZAES, EIRGEHIRERTE X Server £
WEIEREREMDLIEERNEL . FNTURA—TEREFZRENE:

typealias async (@moonchor.ChoreoContext, amoonchor.Located[Request,
Server]) — @moonchor.Located[

Response,

Server,
] as ReplicationStrategy

K, BANWAIEN access_server MSEIT . HATRERBIEASEUEBH K

async fn access_server_v3(
ctx : amoonchor.ChoreoContext,
request : @amoonchor.Located[Request, Client],
strategy : ReplicationStrategy

) — amoonchor.Located[Response, Client] {
let request_at_server = ctx.comm(client, server, request)
let response = strategy(ctx, request_at_server)
ctx.comm(server, client, response)

async fn put_v3(

ctx : amoonchor.ChoreoContext,

strategy : ReplicationStrategy,

key : String,

value : Int
) = Unit {

let request = ctx.locally(client, _unwrapper = Request::Put(key,
value))

access_server_v3(ctx, request, strategy) [ignore

}

async fn get_v3(
ctx : amoonchor.ChoreoContext,
strategy : ReplicationStrategy,
key : String
) — amoonchor.Located[Response, Client] {
let request = ctx.locally(client, _unwrapper = Request::Get(key))
access_server_v3(ctx, request, strategy)

BHE—K, EFIRBHEMINMNEEIERIEEFMRERT . TEH, BAIERZN—ENEEDN
S HIRE:

async fn double_replication_strategy(
state_at_server : @moonchor.Located[ServerState, Server],
state_at_backup : @moonchor.Located[ServerState, Backup],
) — ReplicationStrategy {
fn(
ctx : amoonchor.ChoreoContext,
request_at_server : amoonchor.Located[Request, Server]
) {
let request_at_backup = ctx.comm(server, backup, request_at_server)
let response_at_backup = ctx.locally(backup, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_backup)
let state = unwrapper.unwrap(state_at_backup)
handle_request(state, request)
)
let backup_response = ctx.comm(backup, server, response_at_backup)
ctx.locally(server, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_server)
let state = unwrapper.unwrap(state_at_server)
let res = handle_request(state, request)
check_consistency([unwrapper.unwrap(backup_response), res])
res

b)

HrA, do_backup BRENTHRITMEIRLIEFTRIZLE, I8
double_replication_strategy RIRENZER, EIR[EI— ReplicationStrategy ZEVAJIK
8, RERMA IS4, double_replication_strategy FBEMIEH—NENEFIER, &
Lt, BANIRINFIASMREHRE T EHHKE, XMIMEDRXHERERIUESH
choreography,

B, BN AE—1EE/) choreography MK E :

async fn kvstore_v3(ctx : @moonchor.ChoreoContext) — Unit {
let state_at_server ctx.locally(server, _unwrapper =
ServerState ::new())
let state_at_backup
ServerState::new())
let strategy = double_replication_strategy(state_at_server,
state_at_backup)
put_v3(ctx, strategy, "keyl", 42)

ctx.locally(backup, _unwrapper =

put_v3(ctx, strategy, "key2", 41)
let vl_at_client = get_v3(ctx, strategy, "keyl")
let v2_at_client = get_v3(ctx, strategy, "key2")
ctx.locally(client, fn(unwrapper) {
let vl = unwrapper.unwrap(vl_at_client).unwrap()
let v2 = unwrapper.unwrap(v2_at_client).unwrap()
if vl + v2 = 83 {
println("The server is working correctly")
} else {
panic()
}

b

> ignore

}

test "kvstore 3.0" {

let backend = @moonchor.make_local_backend([server, client, backup])

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_ v2,
server))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore v2,
client))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore v2,
backup))
}

5*U;¥§§§§¥ﬁlffls7lunfﬂzi ﬁﬁrﬁgL57an
MREH—DTHFAOEFIHRE, =814, FHNBEE XA Backup EEUMX 7

struct Backupl {} derive(Eq, Hash, Show)

impl @moonchor.Location for Backupl with name(_) {
"backupl"
}

let backupl : Backupl = Backupl::{ }
struct Backup2 {} derive(Eq, Hash, Show)
impl @moonchor.Location for Backup2 with name(_) {

"backup2"
}

let backup2 : Backup2 = Backup2::{ }

ETREEEIN access_server HIZOEE, FHA1IZILI TR, 771k Backupl #
Backup2 #E—EIEKRHBFEINN, FTERUTILRIBTEES: let request =
unwrapper.unwrap(request_at_backup); let state =
unwrapper.unwrap(state_at_backup); handle_request(state, request) , EERIEE
ARG, NHEMRERE, LB, moonchor B9 MABERERE MBMAILERT, 1IN
F A MoonBit IS EM 2, BMEIARMIEZEMRM—TZERE do_backup,, BEEK—T
BEETSH B, ETMIAIANEE:

async fn[B : @moonchor.Location] do_backup(
ctx : amoonchor.ChoreoContext,
request_at_server : amoonchor.Located[Request, Server],
backup : B,
state_at_backup : @moonchor.Located[ServerState, B]
) — amoonchor.Located[Response, Server] {
let request_at_backup = ctx.comm(server, backup, request_at_server)
let response_at_backup = ctx.locally(backup, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_backup)
let state = unwrapper.unwrap(state_at_backup)
handle_request(state, request)
b

ctx.comm(backup, server, response_at_backup)

Wb—k, BHAIMEEREOAMESEIIINEI A E =ZRIANEHIKEE 7. T8RRI, REE
triple_replication_strategy IREIAIRENAVER do_backup MERENA]:

async fn triple_replication_strategy(
state_at_server : @moonchor.Located[ServerState, Server],
state_at_backupl : @moonchor.Located[ServerState, Backupl],
state_at_backup2 : @moonchor.Located[ServerState, Backup2]
) — ReplicationStrategy {
fn(
ctx : amoonchor.ChoreoContext,
request_at_server : amoonchor.Located[Request, Server]
) {
let backup_responsel = do_backup(
ctx, request_at_server, backupl, state_at_backupl,
)
let backup_response2 = do_backup(
ctx, request_at_server, backup2, state_at_backup2,
)
ctx.locally(server, fn(unwrapper) {
let request = unwrapper.unwrap(request_at_server)
let state = unwrapper.unwrap(state_at_server)

let res = handle_request(state, request)

check_consistency([
unwrapper.unwrap(backup_responsel),
unwrapper.unwrap(backup_response2),
res,

D

RES)

b

BTFEAIKINTER T EFIREHIAEEEMNDE, access_server | put . get RMAFEME
AMEIR, LIS RELM KVStore F1TMIA:

async fn kvstore_v4(ctx : @moonchor.ChoreoContext) — Unit {
let state_at_server = ctx.locally(server, _unwrapper =
ServerState:: new())
let state_at_backupl
ServerState::new())
let state_at_backup2
ServerState::new())
let strategy = triple_replication_strategy(
state_at_server, state_at_backupl, state_at_backup2,
)
put_v3(ctx, strategy, "keyl", 42)
put_v3(ctx, strategy, "key2", 41)
let vl_at_client = get_v3(ctx, strategy, "keyl")
let v2_at_client = get_v3(ctx, strategy, "key2")
ctx.locally(client, fn(unwrapper) {
let vl = unwrapper.unwrap(vl_at_client).unwrap()
let v2 = unwrapper.unwrap(v2_at_client).unwrap()
if vl + v2 = 83 {
println("The server is working correctly")
} else {
panic()
}
b

> ignore

ctx.locally(backupl, _unwrapper =

ctx.locally(backup2, _unwrapper =

test "kvstore 4.0" {

let backend = @moonchor.make_local_backend([server, client, backupl,
backup2])

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore vé,
server))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_ vé,
client))

@toolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_v4,
backup1))

atoolkit.run_async(() = amoonchor.run_choreo(backend, kvstore_ v,
backup2))

}
SHiE

HER—HIFWHIRTE! EXBEXESD, H(EB) moonchor (536 T hEIR HIENIEH, EERT
MoonBit 32 RRIRIABEN RN BATHRANTIRATGEM . XTMEAXNRENEZHT, IUNSE
Haskell B9/ HasChor M Choral i5= 8§#& moonchor 1S, 8E B S =1l{ERA moonchor,
BB moon add Milky2018/moonchorq0.15.0 #i<%&E,

(RXEMETT)

https://github.com/gshen42/HasChor
https://www.choral-lang.org/
https://github.com/Milky2018/moonchor

