
什么是continuation

与其问什么是 continuation，不如先问什么是控制流。

控制流在各编程语言中都是相当基础的概念，它表示程序接下来应该怎么执行。典型的命令式语

言程序中存在条件控制流和循环控制流，部分语言中存在 try-catch 异常捕获机制。它们的实现

往往和语言本身的实现有紧密的关系。例如，一个 C 语言的编译器需要为条件表达式单独创建一

个 AST，并对这个 AST 进行特有的语义分析（或者进行仅属于条件表达式规则的求值）。C 语言

中 continuation 表现为当前状态下处理器里各个寄存器的值和栈内数据。

和以前一样，为了清晰性，我会选择 Scheme 这样易于解释的语言来编写程序作为辅助说明，有

时可能也会选择 JavaScript 这种人人都能轻易地看懂而且表达能力强大的语言，或许也会使用

Haskell 这样拥有相对强大类型系统的语言。

作为控制流的抽象

Continuation 是控制流的抽象。在一个表达式求值的过程中，continuation 就是求值到目前为止

剩下的部分。

（在经典教材 EOPL 中，这类抽象一般会使用“过程表达”和“数据结构表达”两种形式进行表达。

这篇文章中，我们仅使用过程表达，下次有机会或许我可能专门写一篇文章来尝试用数据结构表

达来重写一些文章里的示例。）

考虑一个阶乘函数：

它的某个求值过程：

在求值的第 2 行处，对于 (fact 1)这个待求值的表达式，continuation 就是：

(define fact
  (lambda (n)
    (if (zero? n)
        1
        (* n (fact (- n 1))))))

  (fact 2)
= (* 2 (fact 1))
= (* 2 (* 1 (fact 0)))
= (* 2 (* 1 1))
= (* 2 1)
= 2



也就是说， (fact 1)求值完毕后，得到一个结果 result，然后再让 continuation 作用到这个

结果之上就得到了整个表达式的值。从求值函数 eval的角度来看，暴露出 continuation，求值

过程就是这样的：

执行到这一步， (fact 0)外面有两个 continuation：一个在求值 (fact 1)到过程中， (fact
0)求值完后要做的事情；另一个是 (fact 1)求值完后要做的事情。事实上，它们可以看作一
个 continutaion，都是 (fact 0)求值完后要做的事情。也就是说，对参数的求值过程使得
continuation 变大了。

让我们再看看一个暴露 continuation 的条件表达式求值过程：

我想我已经表达清楚 continuation 的概念了。那么它到底有什么用呢？解释器直接对表达式求值

和先构造其 continuation 再 apply 有什么区别呢？

call/cc

当 continuation-passing interpreter 对表达式求值时，构造了表达式的 continuation，并通过把

它作为参数传递再进行求值。这样做的一个很大好处是增加解释器的灵活性，使得解释器可以面

对更多其它的控制流。还有一个好处，就是可以把 continuation 暴露给程序员！

call/cc 的含义是 call with current continuation，是 Scheme 中用来操作 continuation 的函数。

例如：

(lambda (result)
  (* 2 result))

  (fact 2)
= ((lambda (r) (* 2 r)) (fact 1))
= ((lambda (r) (* 2 r)) 
   ((lambda (r) (* 1 r))
    (fact 0)))

  (if (zero? 0) 1 2)
= ((lambda (r)
     (if r 1 2)
   (zero? 0)))
= ((lambda (r)
     (if r 1 2))
   #t)
= (if #t 1 2)
= 1



的值是 2。这个求值过程很奇妙，它不同于我们接触到的其它函数调用的求值。含 call/cc 表达式

的求值规则是这样：

call/cc 接受一个函数作为参数，该函数的参数我们统一命名为 cc，这个 cc 就是 call/cc 表达式

的 continuation。如果函数内部出现了 cc 调用，那么这个调用的结果就是整个表达式的结果；

如果没有出现 cc 调用，那么 call/cc 的调用结果就像普通函数一样放回整个表达式继续求值。

对于上面例子里的这个表达式，求值过程是：

当 call/cc 表达式里出现了 cc 调用，那么外面的 (* 2 ...)这个乘法就作为 continuation 变成

cc 了，永远不会执行了。这里只体现了 cc 调用的情况，下面这个例子中，call/cc 内部没有 cc

调用，call/cc 调用的结果就是整个表达式的结果：

结果仍然是 2。

到此为止，我们还是不知道 call/cc 有什么用途，似乎

和

(* 2 (call/cc
      (lambda (cc)
        (cc (fact 1)))))

  (* 2 (call/cc
        (lambda (cc)
          (cc (fact 1)))))
= (let ([cc
         (lambda (x)
           (* 2 x))])
    (cc (fact 1)))
= ... ;; (fact 1) = 1
= (* 2 1)
= 2

  (* 2 (call/cc
        (lambda (cc)
          1)))
= (* 2 1)
= 2

(... (call/cc (lambda (cc) (cc expr))) ...)



没什么区别，除了多打了很多字和括号。

在 Scheme 中，continuation 是 first-class 的，像函数一样可以赋值给一个变量或者当作参数传

递。在上面 call/cc 的例子中，我们已经看到，call/cc 表达式内的 cc 就是 continuation 的抽象，

因此我们除了可以把它当作函数直接调用，还可以把它赋值给一个变量：

在第 5 行，我们把 cc 赋值给了 cont，这样 cont 就成为了

我们可以在任何再需要它的时候进行调用。因此第 8 行调用的结果是 (* 2 20) = 40。

Continuation-Passing Style

以下简称 CPS。CPS 是一种编程风格，这种风格的函数将 continuation 作为参数，并在原本的

结果上调用 continuation。以下是一个例子：

这里， add/k就是 add的 CPS 版本。使用 NodeJS 写过异步程序的程序设计师可能熟悉这种风

格。以下是上述代码的 ECMAScript 版本：

(... expr ...)

(define cont 0)

(* 2 (call/cc
      (lambda (cc)
        (set! cont cc)
        (cc (fact 1))))) ;; => 2

(cont 20) ;; => 40

(lambda (x) (* 2 x))

(define add
  (lambda (x y)
    (+ x y)))

(define add/k
  (lambda (x y cont)
    (cont (+ x y))))

function add_k(x, y, cont) {
  return cont(x + y);



如果我们想表达如下一段顺序逻辑：

CPS 版本就是：

这里为了简便，没有把 console.log  函数进行 CPS 变换，否则结果应当是这样的：

这里用了一个 id  函数来表示 continuation 的终点，也就是整个程序的终点。

如果前面关于 continuation 的讲解你看懂了，这个程序理解起来应该没有什么困难。为了异步编

程，NodeJS 经常会使用这样的风格，缺点就是它往往会导致回调地狱，写出的代码难读难维

护。

关于 CPS 和 call/cc 暂时还不能说太多，下次谈到 Monad 和类型系统时或许还可以再谈谈这个

问题。

}

function add(x, y) {
    return x + y;
}

function double(x) {
    return x * 2;
}

console.log(add(double(3), 10)); // => 16

function add_k(x, y, cont) {
    return cont(x + y);
}

function double_k(x, cont) {
    return cont(x * 2);
}

double_k(3, (x) => add_k(x, 10, console.log)); // => 16

function id(x) {
  return x;
}

double_k(3, (x) => add_k(x, 10, (x) => console.log_k(x, id))); // => 16



（本文定价1元）


