MEFIAFEEParser-Combinator
XAE—NHIE, RE— Haskell N\[JEIEIC,

BINNESRRE—1THTHRS parser NE., EASFELHNEMAZS, —1 parser NiZEHIE
FRIBEMNMN AST NEESN, IIEBNREBFRE, %E AST, FHERIEFENNBENR AST #ile—
TER, X parser N1z iXE:

type Parser = String — Char
parser :: Parser
parser "" = error "Empty string"

parser (x:xs) = x

parse :: Parser — String — Char
parse p = p

BPMEFNEXMNZARTERER., clEERER, BHANRMNNEMR, E T -—ER(ENEHIT
TR

X ErEIERRY parser WEM E, B 1EZM—RIEHRINE), (€13 parser ANMNAT AR F4F,
AT DA% (e R P,

(EEZREUE NSRRI parser

FiA Parser FERIZF/DRIXHEH:

type Parser a = String — a

ERFAIA error HEBHXIT parse IFEPHEEIR, IMERNNEERKNEIZREE, 71E parser
RO EASHEIRER

data ParseError = ParseError String

type Parser a = String — Either ParseError a
MEBMNMAINES L—FREF T :

parse :: Parser a — String — Either ParseError a
parse p = p



charParser :: Parser Char

charParser = \s — case s of
[1] > Left $ ParseError "Empty string"
(c:cs) = Right ¢

Ref, BEARG, FABAIFE parser AIMMEE R—RMEE, LA parse H—T5EMN
FH, MARERER. BMNFLHNN parser BUTHINEE: URFRHEALE ¢, MERE
RE, TRE. bR, RNFEXD parser FEFBHTEMEART, BNBTERS—T
satisfy RE, BEK—MEE, SBFFIEMRARNERN, parser #iiEKHEA

satisfy :: (Char — Bool) — Parser Char
satisfy p s = case s of

[l > Left $§ ParseError "Empty string"

(c:cs) — if p c then Right c else Left $ ParseError $ "Expected " +
show ¢

cParser :: Parser Char
cParser = satisfy (\c » ¢ = 'c"')
EELF!

T—SMBVRIEEZNFRIFS, BIATE parse BFFF ¢ ZEMREE parse T—1NFRF o, E
R, AIUXAE:

coParser :: Parser String
coParser [] = Left $ ParseError "Empty string"
coParser (c:cs) =
if ¢ = 'c'
then case cs of
[] > Left $ ParseError "Only one c"
(d:ds) — if d = 'o' then Right "co" else Left $ ParseError $
"Expected 'o' but got " ++ show d

else Left $ ParseError $ "Expected 'c' but got " + show c

BEARBNIEEE T satisfy, RTAEMD parser AEHEFKIE? BEHEZ parser, —
parser FEMERFHE ZEBERFRNFRIBREF FRET— parser A,

AI¢H&HY parser

WHERAEB Parser ZKBMEN, HAEM reqularparse MHEHAMERBHRIOTI S
25



type Parser a = String — (String, Either ParseError a)

regularParse :: Parser a — String — Either ParseError a
regularParse p = snd . p

HERIAY, satisfy EREXATLMERARINT:

satisfy :: (Char — Bool) — Parser Char
satisfy p input = case input of
[1] » ([], Left $ ParseError "unexpected end of input")
(x:xs) = (xs, if p x then Right x else Left $ ParseError $ "unexpected

" [x])
IFEFATR AT LA G R 3t 2B & T !

combinate :: Parser a — (a — Parser b) — Parser b
combinate p f input = case p input of
(input', Left err) — (input', Left err)
(input', Right a) — case f a input' of
(input'', Left err) — (input'', Left err)
(input'', Right b) — (input'', Right b)

coParser :: Parser Char
coParser = combinate (satisfy (= 'c')) (\x — satisfy (= '0'))

WEAS parser WIEMAERERM! RAIENRIE, MEBHEESEEN coParser ZBETHI
— parser R, MEIERT/E— parser WERENRAEER, XTFEH 4L, Kk
AR, XBEMAZERT,

MERE| satisfy REHIEEF combinate MEIAS, N Parser EEISLH] Monad typeclass
HOREhRR B AFT=E T, K, RTik Parser BT, HITAEIM—RIIEEHN

typeclass,

ParserMonad

RER—1t! EEEZNRIEZE, RNEMFRERESR, BMIILBAR parser EINEA,
B5%, A ParseError XEFAEZER, ZREBR—TBITEIRN, HNNEEREEE
MIRBERRE: RNAERTHREINEMT4, MBNSRIMEIINE+4. AN EREEN
ROZ T

data ParseError = ParseError {
expected :: String



, met :: String
} deriving (Show)

T Parser XE, AT EM typealias FRix, IMAEEIENMA record XM T

newtype Parsec s a = Parsec f{
runParser :: [s] — ([s], Either ParseError a)

}

regularParse :: Parsec s a — [s] — Either ParseError a
regularParse p = snd . runParser p

AR, BAR parser IINT —TKESE s . XEEN— parser F—TEMERFEBIRENGN,
WEBIEEM token i Z RIIEUEEMIRENEAN, FILAUXBIRMASEERLZ 1, HA, G
HIAEZZEENEFBNMA, FAUENNESRR charParser XK

==

type CharParser = Parsec Char

Functor . Applicative . Monad HISEINEPZEFNAM, XEEHEMMBLG:

instance Functor (Parsec s) where
fmap f (Parsec p) = Parsec $ \input — case p input of
(input, Left a) — (input, Left a)
(input, Right b) — (input, Right (f b))

instance Applicative (Parsec s) where
pure a = Parsec $ \input — (input, Right a)
Parsec p <*> Parsec q = Parsec $ \input — case p input of
(input, Left a) — (input, Left a)
(input, Right f) — case q input of
(input, Left a) — (input, Left a)

(input, Right b) — (input, Right (f b))

instance Monad (Parsec s) where
return = pure

Parsec p >>= f = Parsec $ \input — case p input of
(input, Left a) — (input, Left a)
(input, Right b) — runParser (f b) input

Frh LI —IEIXLE typeclass BB F#H—F IR parser 945, LT Monad Zf5, A&
parser BU BRI E &G 1 -



coParser :: CharParser Char
satisfy (= 'c') > satisfy (= 'o0')
'c') A char 'c', X parser RinEITENFR:

coParser =

ERH—DHY, BAE satisfy (=

char :: Char — CharParser Char
satisfy (= c)

char c =
PREXNBEE, BAFBERXME— parser e EHIZBIT— T EENFER S

String — CharParser ()

string ::
string [] = return ()
string (c : cs) = char ¢ > string cs
AT regularParse (string "combinator") "combinator" JUiX—TF, X parser fst
RELfE. (B2, EIBRIAL, 1M parser ZDE RO

AMEERFMEBEN THAFR, MAMEENE

=SS

|—A

satisfy HIREHIERREM, B(IEIEIR]

B AFR
string REEIRTG Unit, MEBX LBAIERLEEHERE

SETH
https://jakewheat.github.io/intro_to parsing
http://book.realworldhaskell.org/read/using-parsec.html

(AXEMTT)


https://jakewheat.github.io/intro_to_parsing
http://book.realworldhaskell.org/read/using-parsec.html

