
从零开始手写Parser-Combinator

这不是一个教程，只是一个 Haskell 入门学习笔记。

我们的任务是编写一个用于编写 parser 的库。作为最简化的基础内容，一个 parser 应该具有把

字符串转化为 AST 的能力。现在我们只有字符串，没有 AST，不妨假设我们的目标 AST 就是一

个字符，这个 parser 应该像这样：

这个程序的含义应该不需要我解释。它非常简单，但却是我们的基础。在下一章我们将对它进行

扩展。

在这个最简单的 parser 的基础上，我们要做一点适当的改动，使得 parser 不仅可以输出字符，

还可以输出任何东西。

任何类型作为结果的 parser
所以 Parser 类型至少是这样的：

上次我们用 error 粗暴地对待 parse 过程中的错误，现在我们把错误放到类型里，方便 parser

返回更精确的错误信息：

现在我们就可以重写上一章的程序了：

type Parser = String -> Char

parser :: Parser
parser "" = error "Empty string"
parser (x:xs) = x

parse :: Parser -> String -> Char
parse p = p

type Parser a = String -> a

data ParseError = ParseError String

type Parser a = String -> Either ParseError a

parse :: Parser a -> String -> Either ParseError a
parse p = p

很好，但还不够，因为我们希望 parser 可以做更复杂一点的事情，比如说 parse 出一个特定的

字符，而不是任意字符。我们希望我们的 parser 有如下的功能：如果字符串开头是 c，就直接
返回，否则报错。也就是说，我们希望这个 parser 对字符串进行条件判断。我们需要编写一个

satisfy 函数，它接收一个谓词，当谓词判断输入为真时，parser 就接收输入：

非常好！

下一步就是处理更多的字符序列，例如在 parse 出字符 c 之后继续 parse 下一个字符 o，固
然，可以这么写：

但既然我们已经有了 satisfy，为什么把两个 parser 组合起来呢？要组合多个 parser，一个

parser 在处理完字符串之后需要将剩余的字符串保存下来给下一个 parser 用。

可组合的 parser

现在我们修改 Parser 类型的定义，并添加 regularParse 函数使其忽略结果中剩余的字符串

部分：

charParser :: Parser Char
charParser = \s -> case s of
 [] -> Left $ ParseError "Empty string"
 (c:cs) -> Right c

satisfy :: (Char -> Bool) -> Parser Char
satisfy p s = case s of
 [] -> Left $ ParseError "Empty string"
 (c:cs) -> if p c then Right c else Left $ ParseError $ "Expected " ++
show c

cParser :: Parser Char
cParser = satisfy (\c -> c == 'c')

coParser :: Parser String
coParser [] = Left $ ParseError "Empty string"
coParser (c:cs) =
 if c == 'c'
 then case cs of
 [] -> Left $ ParseError "Only one c"
 (d:ds) -> if d == 'o' then Right "co" else Left $ ParseError $
"Expected 'o' but got " ++ show d
 else Left $ ParseError $ "Expected 'c' but got " ++ show c

相应的， satisfy 函数可以修改成如下：

现在我们就可以愉快地组合啦！

现在组合 parser 的工作就非常简单啦！只不过有个缺陷，就是组合得到的 coParser 忽略了前

一个 parser 的结果，而直接取了后一个 parser 的结果作为最终结果。这不算什么问题，改起来

也不困难，这里就不多赘述了。

观察到 satisfy 函数的写法和 combinate 的写法后，为 Parser 类型实现 Monad typeclass

的冲动就自然产生了。接下来，为了让 Parser 更好用，我们为它实现一系列简单的

typeclass。

ParserMonad

虚晃一枪！在写更多的代码之前，我们要做好充足的准备，那就是让我们的 parser 更加通用。

首先，为 ParseError 类型注入更多的信息。考虑到遇见一个解析错误时，我们通常希望看到

的报错信息是：我们希望解析器看到的是什么，而解析器实际看到的是什么。所以这个类型被改

成这个样子：

type Parser a = String -> (String, Either ParseError a)

regularParse :: Parser a -> String -> Either ParseError a
regularParse p = snd . p

satisfy :: (Char -> Bool) -> Parser Char
satisfy p input = case input of
 [] -> ([], Left $ ParseError "unexpected end of input")
 (x:xs) -> (xs, if p x then Right x else Left $ ParseError $ "unexpected
" ++ [x])

combinate :: Parser a -> (a -> Parser b) -> Parser b
combinate p f input = case p input of
 (input', Left err) -> (input', Left err)
 (input', Right a) -> case f a input' of
 (input'', Left err) -> (input'', Left err)
 (input'', Right b) -> (input'', Right b)

coParser :: Parser Char
coParser = combinate (satisfy (== 'c')) (\x -> satisfy (== 'o'))

data ParseError = ParseError {
 expected :: String

对于 Parser 类型，我们过去用 typealias 表示，现在更正式地用 record 定义成如下形式：

注意，我们为 parser 增加了一个类型参数 s。这是因为一个 parser 不一定从字符串获取输入，

也有可能从 token 流之类的数据结构获取输入，所以这里把输入参数类型泛化。当然，多数情况

我们还是考虑作为字符串的输入，所以我们的主角是 CharParser 类型：

Functor、 Applicative、 Monad 的实现都是平凡的，这里直接贴出代码：

手动实现一遍这些 typeclass 有助于进一步理解 parser 的结构。实现了 Monad 之后，组合

parser 的代码就更简洁了：

 , met :: String
} deriving (Show)

newtype Parsec s a = Parsec {
 runParser :: [s] -> ([s], Either ParseError a)
}

regularParse :: Parsec s a -> [s] -> Either ParseError a
regularParse p = snd . runParser p

type CharParser = Parsec Char

instance Functor (Parsec s) where
 fmap f (Parsec p) = Parsec $ \input -> case p input of
 (input, Left a) -> (input, Left a)
 (input, Right b) -> (input, Right (f b))

instance Applicative (Parsec s) where
 pure a = Parsec $ \input -> (input, Right a)
 Parsec p <*> Parsec q = Parsec $ \input -> case p input of
 (input, Left a) -> (input, Left a)
 (input, Right f) -> case q input of
 (input, Left a) -> (input, Left a)
 (input, Right b) -> (input, Right (f b))

instance Monad (Parsec s) where
 return = pure
 Parsec p >>= f = Parsec $ \input -> case p input of
 (input, Left a) -> (input, Left a)
 (input, Right b) -> runParser (f b) input

更进一步的，我们把 satisfy (== 'c') 简化为 char 'c'，这个 parser 表示解析单个字符：

继续这个思路，我们希望有这样一个 parser 能够直接解析一个指定的字符串：

可以用 regularParse (string "combinator") "combinator" 测试一下，这个 parser 确实

能工作。但是，到目前为止，我们的 parser 至少有两个问题：

参考资料

https://jakewheat.github.io/intro_to_parsing

http://book.realworldhaskell.org/read/using-parsec.html

（本文定价1元）

coParser :: CharParser Char
coParser = satisfy (== 'c') >> satisfy (== 'o')

char :: Char -> CharParser Char
char c = satisfy (== c)

string :: String -> CharParser ()
string [] = return ()
string (c : cs) = char c >> string cs

satisfy 的报错信息很模糊，我们通过错误信息只知道遇见了什么字符，而不知道我们需

要什么字符

string 只能获得 Unit，而事实上我们更希望它能得到一个字符串

https://jakewheat.github.io/intro_to_parsing
http://book.realworldhaskell.org/read/using-parsec.html

