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Figure 2: Example executions of the program from Figure 1. (a) With
RPC. (b) With RPC and distributed memory, allowing the system to
reduce data copies. (¢) With RPC and futures, allowing the system
to manage parallel execution. (d) With distributed futures.
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Operation

Semantics

f (DFut x) —
DFut

Invoke the remote procedure f, and pass x by reference.
The system implicitly dereferences x to its Value be-
fore execution. Creates and returns a distributed future,
whose value is returned by f.

get (DFut x) —
Value

Dereference a distributed future. Blocks until the value
is computed and local.

del (DFut x)

Delete a reference to a distributed future from the
caller’s scope. Must be called by the program.

Actor.f (DFut x)
— DFut

Invoke a stateful remote procedure. £ must execute on
the actor referred to by Actor.

shared (DFut x)
— SharedDFut

Returns a SharedDFut that can be used to pass x to
another worker, without dereferencing the value.

f (SharedDFut x)
— DFut

Passes x as a first-class DFut: The system dereferences
x to the corresponding DFut instead of the Value.

Table 1: Distributed futures API. The full API also includes an actor
creation call. A task may also return a DFut to its caller (nested
DFuts are automatically flattened).
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def add(a, b)
return a + b
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Operation Semantics

Create (ObjID Store an object.
o, Value v)
Pin (ObjID o, NodeID |Pin o on loc until released.

loc) — bool Returns false if 1oc failed.
Release (ObjID o) Object o 1s safe to evict.

Get (ObjID o) — Get the object value. May
Value fetch copy from remote node.
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Field Value

*ID The ObjectID. Also used as a distributed memory key.
*Owner Address of the owner (IP address, port, WorkerID).

*Value (1) Empty if not yet computed, (2) Pointer if in distributed

memory, or (3) Inlined value, for small objects (Section 4.2).
*References | A list of reference holders: Number of dependent tasks and a
list of borrower addresses (Section 4.2 and appendix A).
Task Specification for the creating task. Includes the ObjectIDs
and Owners of any DFuts passed as arguments.

Locations |If Value is empty, the location of the task. If Value is a
pointer to distributed memory, then the locations of the object.

Table 2: Ownership table. The owner stores all fields. A bor-
rower (Section 3.2) only stores fields indicated by the *.
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B{A L&, Ownership iR — T2 VIS I RITE, RAISIAITE, (RAEXZISEBRIIFRSIH
[B7, ERRIEL, Ray WNRMLEAATN, BREIRTABERE LI NEIESN, AR
NR—TERMIRALR.
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