P IIVAIARE

OE KR EIBIERAR distributed futures A Ray 1 futures A& Fiti, xF Ray, FILARNEEILSE)
BRI ENMREBAXER; XT futures, AJMENERZHINEEMRESERH, S, WRIR
AT REMMARYEERAXBRAZNMG.

SROZEMNFRAFETF Stephanie Wang BIFREIE :

In Reference to RPC: It's Time to Add Distributed Memory
Ownership: A Distributed Futures System for Fine-Grained Tasks

MEXEER HRNEE—EE, MNEKREMEFRIRS,
RPC fY|a) 2

REFELIERE, Wang BXHFSIAMRITIERY: Z4ERY RPC RIS ENEIETS T HAIRE
ZEF, —RBNVANEEDRARREEEN, FMNIXEFHREEEEENTRE: ZR—TUT
K TIEIRAE:

()
()
add(a, b)

or
1] 1 1

NEFNELFENLEBRRITEREEARN worker TR, T driver RZ{F7 coordinator,
TRITENERIRZ T AR TE:


https://www.usenix.org/system/files/osdi18-moritz.pdf
https://www.ray.io/
https://milky2018.github.io/2022/04/29/%E7%94%A8-Future-%E5%A4%84%E7%90%86%E5%BC%82%E6%AD%A5%E9%80%BB%E8%BE%91-%E5%82%BB%E7%93%9C%E7%89%88/

Pass by reference

Pass by value (Distributed memory)
Driver  Worker 1 Worker 2 Driver  Worker 1 Worker 2
® L
a=F() ja:fo
3 a a .
o R b=F()
(14
2 o | o
= I c=add(
3 [alb] a a,b)
m c=add( c .
a,b)
k‘ u
(a) (b)
<« Driver  Worker 1 Worker 2 Driver ~ Worker 1 Worker 2
e ~— ? ?
: .
5 a| _Ja=f() b=F() a=f() b=F()
= b
3 c=add(
& alp d a, b)
=] c=add( . e
k> a,b) |
g | <
o
c
o
r4
(c) (d)

Figure 2: Example executions of the program from Figure 1. (a) With
RPC. (b) With RPC and distributed memory, allowing the system to
reduce data copies. (¢) With RPC and futures, allowing the system
to manage parallel execution. (d) With distributed futures.

X EFRH (a) RMESA RPC, EE VAR T ARG

—HRETOXREERH, MEREDERABNERELEN, EeEETERRAER
BEARZEDHIVTELRET (HIRSRIN, BABENARIEABARS, B—AR(ER
BonhBmARERY S USRI 1ERE

BIXITEHZREER, driver BAFHF L—MTERHEZT FR#T T—T1TE.

=Ly

ANz aREM, FREEE—ARANEZTFinEEER, BMER futures RIZFA, X1 75EF]
PUARIBIERBFITINE, SERMZ(C).



MEESMDAEMER—L, BRNBRIRZ D), SHRARET2IRNERSH. EH5AE%
BHMADHNAFEMAIUERX—R, EERNHINERBRETEERETE ., =4,
Er N REERNAIEENZREDShRENET, —L7 RIERFARR AFR AL
X—m, B2l ROMA, SHEBATAIAFHEE—TELT Redis WO ERZ, EEISMDHN
N7E, TETHERITEERERE Redis B2, M@ TFTET KB driver (BB ER] key,

BE, BAFERSHANEFEXAILTALENI:

BARBNFEEDOTIENZE, ENFENESHMMERS, SREFREIIL
BANEFEZF o E IR X LIS RAYAIREIUL

FRINARBEERMNH, FIEl(b)PREN—REIELS, EPHTNEFREERTFTAB
B—X, EMEERRMEDEET

RETBEAESTTRRE, ZORETHOHARANITERE, ENTHEERENAE, &
[ERE AT BEMIREEI T D &R

FEBNZEBEEBRT D MINER, ownership f2R[ERRI S NBIE.

/fa— 1 El(d)#iZ distributed futures BEIAZIRIZR, BEERTLUBEUIRRSEHFTHH, BAILAHITH
£S5, BNATUER, BRITXFE-TRS, EPFEMXAHEHS:

RRBITAGNNREE, SENRVIZZLEMEIUL
ATRESHREE, XTI FRAABLATEMEER T TRLTE f M add 7TEEILE

R FF B\

MREH
KT, XEXRR T —EREITENTER, RREFEMESIRAREAN, FRANSTEHEER
EANEEE RPC, T distributed futures Fi ] AR EHFAIEERIL RPC TFIFEFTH. Xt
Z Ray IEFEHTROMR, EMEBETRFMNE NAMHTE Ray THRE. B8, RELMSESRS
HNEERGRES, HEES. ERIANNIXZAKAENER, RRIRECERZE, (AR
SRR B BRI RER K,

BTSRRI BMEE distributed futures B4 BIBBETIH .
miziz0l
HERITH, EANRZAIFIIH, 5 futures HATMEZI. Ownership ZETH L thiRHT

asyncio &, 1BAH asyncio thAIIA, EA Python At IFZ&E (fRYF, GIL) FIFRZE
API,

EORXHERY:



Operation

Semantics

f (DFut x) —
DFut

Invoke the remote procedure f, and pass x by reference.
The system implicitly dereferences x to its Value be-
fore execution. Creates and returns a distributed future,
whose value is returned by f.

get (DFut x) —
Value

Dereference a distributed future. Blocks until the value
is computed and local.

del (DFut x)

Delete a reference to a distributed future from the
caller’s scope. Must be called by the program.

Actor.f (DFut x)
— DFut

Invoke a stateful remote procedure. £ must execute on
the actor referred to by Actor.

shared (DFut x)
— SharedDFut

Returns a SharedDFut that can be used to pass x to
another worker, without dereferencing the value.

f (SharedDFut x)
— DFut

Passes x as a first-class DFut: The system dereferences
x to the corresponding DFut instead of the Value.

Table 1: Distributed futures API. The full API also includes an actor
creation call. A task may also return a DFut to its caller (nested
DFuts are automatically flattened).

XHERE Ray EIEXFIRZIRY API HLEE5R], MHEL L Ray MAEMIRKBRAXER shared A

del . b, Actor BXNFFEREREIEEBIR, AMUT

remote : (f :
get : DFut a — a

XEREE, FIHAIREARER

a > b) = DFut a — DFut b

remote FJIATE—PEREZRIZIZREL, MMPILUZIENIT; M2 REHITROS AR EEH

E5|H, 2 DFut 3£,

AEIENXIF, MRESEE, WEBEIE&KM DFut, THE—

PNEIUEZIETTAY Python |+ (GERAIAERIBET) -

import ray

ray.init()

aray.remote
def f():

return 10

aray.remote



def add(a, b)
return a + b

f.remote()
f.remote()
add.remote(a, b)

a
b
C

print(ray.get(c))

RNTMEBNRBX S, Ray FEERULTA f.remote() N ARERARE, SNEHES
f() =ik,

ZEABREZMNTRETHISTSHRIFESIA, XERRHA UL FLEHEE N RER

£, MMEMRtF B ANITERIR, 13~1X=THEME T —MTEE, RE3RRFTESL
ROAR, 7ZEEFRMTEMNMTEE., XEXMIBLIRKE. T Ray HIRME, EEK
ERNRARFLEMER 7 ervE B B r] MAREAHES LA ITEE,

ERMAN—T01F, ERTTERREDR, 16478 add KEMITRIMITAOTESR, mM1317/11417
NEgEKRBXR. B, iR3TMIMTHITERTIMTERT TR (8&, —13%8 worker)
£, BOE; add HENAMUERR—" f NITETR, BD—XEEE.

At ABEEKENR? 2, TARRKEANTZENENEFNEY, RIEFAREIREZ
DFut, FEERERZ—MEM, XTS5 LMAAIREREZRT AR, B13TCBHRITRE f 9T
ERERNN TR ERPMABRHET T, BREFEN7T7 BRBE SR AT, Xt driver F2F2EA
Y. Ray RERZIEMRAY, FVKETRAESHE, HENZEMEBER, E—"HRint9flF:

x = f()
y = g()
ray.get(y)

RENSRLEAE f NHITER, MAE—TRBENEAIERN (Ray B task 2 AEIEA
RY), TRERSKIESRESH A DAE IS (R E0 8 S 1T 58 —1THCRDE R AT M BB SR

ERKEBBRXANTERNSE: XA NREMATELEROMERK.

ELFT R ARBHITHN =T EEL R ENNEAR—8, REAUMESRNS TR R IEI.
X e R eIy RN FERBRT

MEEMREE R, BRKEERERE—MENNE, FEAWAXNMERSZEEKET, UR
KETHERER, SWMRKRXERKELRE. ZEE Ray 25 task HAB—EMNE, 18LE
BT task BIUES R, ESERAE. BREmAR, FARRE R NZEAT,

A



SHYFHRBEEEEIT, Ray RIS set(k, v) BIRTSIEBURE, XEHRRT —EE:
0T IREFFIE L pass-by-value B9 RPC IEX—H, X MEESELREN, TERES TENY
1 ABMABERREART, TEHSHIIESS, TEMA actor BXHRT, AHMHE
EPHIRERRST

BIEHEAR, EERERAR—MRERE, TRETEN, BURRIFZ task FTHRIED
MR, task BITRIRTEIRFIAL T [B)RE,

BUIESZSERFIER, RAFSTEERTHNESEHE—INER, MEKREH KO-, LM
HigER T HARTMNAESE.,

T actor [ distributed futures ZE XA K, BIFRIREIRK, B8R, Ray ZEEIRS
B9 actor iITEM AN E task, T actor B E EEBERNEREEANS AL,

BrpikOl, ttM2EREFERE, E TERSIFANA. set(k, v) ERNRRIFIREMR
RTY—"EREFENRETME, REAZIUERIEE T, SHIZeERAL, BLEREES
MATFERET, IREEMNRE R BAEKEAY,

RNEFEHE

Ownership BN REBAEZ T S object store £, 11T object store T AFITETEER
MXDH ., FIDAREX NI FRERFEAENHNFEREDRE:

a = f()
b = f()
c = add(a, b)
get(c)

Object store 127 £ kv AUIEMEIRO, AT



Operation Semantics

Create (ObjID Store an object.
o, Value v)
Pin (ObjID o, NodeID |Pin o on loc until released.

loc) — bool Returns false if 1oc failed.
Release (ObjID o) Object o 1s safe to evict.

Get (ObjID o) — Get the object value. May
Value fetch copy from remote node.

SEEXLE AP, BefleBitd—ikE:

BI=TABMERITEE, BUTRIBFR, X c & get BE, X—RESREHRNLE
Ff Get(c)

Get(c) BHEI—1NEE, ZZ=EMN—1 task xBx, MMmAAL c = add(a, b) X task
AT, RIZRIX task ARSI NO H4T

B, Get(a) M Get(b) RAWA a = f() M b = f() X tasks FHIHIT
1T a = f() X— task T = N1 S7EHE S ownership table F{RZF— ObjectiD ;5 a
Mg, ABERHEE (MELE=). H owner N1, H reference NO #] N1

HiX task HIT5REERR, N1 Create(a, 10), BRAMWTEIDET N0 (HEUE
SRAN, XBIEZR— 150 object store AIIE%t)

MEfE, WMRIXMERA, EEZ(EE object store 7, N12IEA Pin(a, N1), BN
B ERXTERTEENTR, BBIEERES)., A TREIARZER, Ownership REMER
RMREHIRLENER, MEHNEHRSER Create, A2 Pin, REHESE—R™
ARNRINARIAA Pin . HREABAN, IPLESEHRITENNRMSBERER, MEEr0E
ERMBHNEIR, FEEEN, SUSERNRER

ETX, BT a = f() X—task TEHITE T, PTLATE ownership table B a X—1T9
3B N1 M references FIRMIBK, TITE reference R NO

Get(a) IR[E], 10FAEBIZIZERINO TR E, KIEMEZEASZHIETE, Get(b) tiR[E
T, WA NOBERET a A b YA

c = add(a, b) &4, ownership table B98I}, Create 1 Pin BVIERtA AT FZA
H—#

RE, BFXD task AT T, NO F~HB referto a 1 b, FFLAFA table 1 NO &M
references 7R MIfR

LB— P& references BIFIRAZEHS, A Release(a), XA table BIICFE MR,
object store FIE N ATFHEFREL



& Get(c) IREl, ERFMNEEZEBRNT—IE

REREDEE T —LEET, BNXTRBNEEAS:

Field Value

*ID The ObjectID. Also used as a distributed memory key.
*Owner Address of the owner (IP address, port, WorkerID).

*Value (1) Empty if not yet computed, (2) Pointer if in distributed

memory, or (3) Inlined value, for small objects (Section 4.2).
*References | A list of reference holders: Number of dependent tasks and a
list of borrower addresses (Section 4.2 and appendix A).
Task Specification for the creating task. Includes the ObjectIDs
and Owners of any DFuts passed as arguments.

Locations |If Value is empty, the location of the task. If Value is a
pointer to distributed memory, then the locations of the object.

Table 2: Ownership table. The owner stores all fields. A bor-
rower (Section 3.2) only stores fields indicated by the *.
B owner TRASHERENTEFRE, METHNREREREFEIND,

B{A L&, Ownership iR — T2 VIS I RITE, RAISIAITE, (RAEXZISEBRIIFRSIH
[B7, ERRIEL, Ray WNRMLEAATN, BREIRTABERE LI NEIESN, AR
NR—TERMIRALR.

FREE=BIHEHE.

(AXEM7T)



