
分布式锁

今天分享的主题是分布式锁。

动机：一致性问题

在任何分布式系统中，只要出现并发，就一定有一致性问题。这里举一个简单的例子，买家在电

商平台上购买了一件商品，卖家还未发货；此时买家发出了取消订单的请求，同时卖家发出了发

货的请求，那么平台应该怎么处理？暂且不论正确结果应该是什么，至少平台不能简单地直接并

发处理两个请求，否则两个请求都收到了成功的回复，而订单不可能同时在发货和取消状态。

这种例子是非常常见的。分布式数据库的数据复制、分布式资源的竞争访问、甚至是单机并发程

序的内存访问。处理这些问题并不一定要用分布式锁，但分布式锁是一个直观的方案，而且在某

些场景下难以被替代。

模型和假设

按照惯例，我们仍然假设应用的数据部分是一个 key-value 映射表（也被称为寄存器），支持以

下操作：

涉及到加锁，扩展两条指令：

加锁

在订单的例子中，一个订单同时只能处于一种状态，且可响应的请求和状态相关。要避免上述不

一致的结果发生，最简单的方式就是为订单关联一个锁。只有持有锁的客户端才能继续访问订

单，其它并发客户端则会阻塞在获取锁阶段或者获取锁失败。

这种抽象的「锁」机制有三种常见的实现方式：数据库锁、分区应用和分布式锁。

数据库锁

数据库锁最常用，但不是本次分享的重点，因此作简要介绍。

write(k, v)
read(k) -> v

lock(k)
unlock(k)

假设所有要处理的数据都在同一个数据库中，直接利用数据库的并发控制机制可以简单地解决并

发问题。

悲观锁

数据库锁是数据库系统的机制，为了防止某些记录被并发修改。例如以下 SQL 语句：

就会为相应的行加锁（有时也可能锁住多行或者整个表）。第一行是共享锁，第二行是排他锁。

共享锁允许多个共享锁一同持有，而排他锁不能和其它锁共存。当某些行需要被更新时，就会获

得排他锁，而读数据只需要获取共享锁。

悲观锁有潜在的死锁问题和性能问题。性能问题来自排他锁阻止了并发访问，而死锁问题可以通

过下面的转账例子来理解：

考虑 A 在给 B 转账的同时，B 在给 A 转账。此时两个并发的处理过程都执行到了第二行语句，

也就是 A 和 B 两个账户都加锁了，而第三行语句都无法执行，造成死锁。预防和处理死锁的办法

也有不少，例如给所有 id 排序，然后按照顺序加锁。但死锁的潜在问题仍然是存在的，而且不可

能一劳永逸地解决（此处不作详细证明）。

乐观锁

乐观锁也叫乐观并发控制，思路也很简单，以以下 SQL 语句为例：

SELECT ... LOCK IN SHARE MODE

SELECT ... FOR UPDATE

def trans(id1, id2, amount):
 lock(id1)
 lock(id2)
 balance1 = read(id1)
 balance2 = read(id2)
 if balance1 >= amount:
 write(id1, balance1 - amount)
 write(id2, balance2 + amount)
 unlock(id1)
 unlock(id2)
 return Ok
 else:
 unlock(id1)
 unlock(id2)
 return Err

在修改任何行之前，获取其版本号，并且在修改提交时更新版本号。如果提交时该行的版本号发

生了变化，说明并发修改发生了，此时就直接让修改过程失败。

乐观锁的实现比悲观锁复杂，需要客户端参与（侵入性）。

分区应用

略。

分布式锁 DLM

考虑更宽泛的场景，例如要实现分布式事务的原子提交，事务涉及到多对象的读写，而不同对象

存储于不同的数据库服务中。此时无法使用数据库的并发控制。大体上来说，需要一种分布式锁

服务来协调并发任务。这个分布式锁具备以下功能：

单纯实现 lock , unlock 操作是很容易的。可以设想实现这样一个服务，其主存的内容就是一

个 key-value 映射表，value 部分是 Mutex<Option<Client>>，用于存储持有该 key 的客户端

id。当 value 为空就表示这个 key 没有被加锁。Mutex 是内存中的锁，用于保证 value 不会被两

个线程同时修改。

困难的部分在于高可用。注意，在实现单机锁服务时使用了内存锁，而多节点想要同时锁住一个

对象该怎么做呢？没错，分布式锁服务。因此分布式锁在实现高可用时一定需要一套严密的机

制。

1.
SELECT id, data, version
FROM table
WHERE id = $ID

2.
Business Code

3.
UPDATE table
SET data = $data
 version = version + 1
WHERE id = $ID AND version = $VER

4.
if UPDATE failed, go to step 1

提供加锁、解锁协议

高可用，意味着没有单点故障并且持久化

死锁预防，通常使用过期机制或者心跳检测

死锁的检测或预防比单机程序的锁更加复杂，因为分布式应用的各个组件都可能是不可靠的。一

个服务可能获取锁后就永久掉线了，如果没有对应的机制来释放锁，这个锁就会被永久持有，这

也是死锁的一种情况。

Redis

观察 Redis 这样的一条加锁操作：

语句的意思是，如果 resouce_name 这个 key 不存在，就将其值设置为 my_random_value。
过期时间是30秒，30秒后无论有没有主动释放，该 key 都会自动被删除。

解锁的操作时这样的：

Redis 保证了 lua 脚本会原子执行。

因此 Redis 可以直接充当 DLM。

Redis redlock

要实现高可用，Redis 的做法是在客户端实现一套算法，这个算法叫作 redlock。算法描述如

下：

用一个例子来解释上述算法。假设现在有5个 Redis 实例，客户端想要获取 key 为 k-1 的锁，超

时时间为30000毫秒。客户端的操作流程如下：

SET resource_name my_random_value NX PX 30000

if redis.call("get", KEYS[1]) == ARGV[1] then
 redis.call("del", KEYS[1])
end

1. 客户端获取当前时间，精确到毫秒

2. 客户端对 Redis 集群的所有示例挨个执行上述加锁操作，使用相同的 key 和随机数 value

3. 如果这个加锁的总时间小于锁的有效时间（上述过期时间），并且超过一半的示例都获取锁

成功，则认为加锁操作成功

4. 对每个实例的加锁有效时间为 validity time = initial validity time - elapsed
time

5. 如果一个实例的加锁过程失败，则整个加锁过程失败，释放掉所有已经加的锁

1. 获取当前时间，例如为10000

2. 生成唯一的随机数，例如12345

3. 开始尝试对 Redis-0 加锁，执行 SET k-1 12345 NX PX 30000，执行成功

4. 再次获取时间，由于上述操作经历了2000ms，所以现在的时间是12000

这个算法一眼能看出很多问题。首先，所有逻辑都实现在客户端，依赖客户端的正确行为；其

次，同时依赖客户端的当前时间和 Redis 服务器的时间，局部时间在分布式系统中是非常不可靠

的。下面具体说明该算法的问题。

Redis redlock review

对于锁服务的互斥性的要求是非常苛刻的。一旦一个锁同时被两个客户端持有，可能会发生非常

糟糕的事情，例如数据库的两个副本都认为自己是主副本（脑裂）。而对于过期时间或者响应延

迟则没有过于严格的要求。

考虑这样的场景：

此时 Client1 和 Client2 都认为自己获得了锁，破坏了互斥性。

考虑第二个场景，客户端在成功完成多数节点的加锁后发生了进程暂停。进程暂停经常发生在带

有 GC 的语言中，这些语言的运行时可能会暂停整个世界来进行 GC。即便没有 GC，机器性能和

进程调度也可能导致进程暂停。当客户端暂停结束，以为自己仍然持有锁，但实际上进程暂停了

一分钟，锁已经过期了，这期间由于进程暂停客户端也丢失了关于锁过期的通知。

考虑第三个场景，客户端和某个节点之间有非常严重的网络延迟，这个延迟可能有一分钟，也可

能使得客户端以为自己持有锁，而锁实际上被释放了。

后面两个问题看似可以通过延长租期时间来解决，但问题是我们不知道这个时间应当被延长为多

少。

Fencing

Martin Kleppmann 认为如果一定要用这种方式实现分布式锁，至少还需要添加如下 fencing 机

制：

5. 尝试对 Redis-1 加锁，执行 SET k-1 12345 NX PX 28000，执行成功。新的有效时间计算
就是为了多个实例能同时释放锁

6. 重复上述过程，对 Redis-2 加锁，执行成功

7. 整个加锁过程宣告成功，接下来异步地对 Redis-3 和 Redis-4 加锁

1. Redis 在 A、B、C、D、E 五个节点上运行，现有两个客户端 Client1 和 Client2 要获取同一

个锁

2. Client1 按 A、B、C 的顺序获取锁，Client2 按 E、D、C 的顺序获取锁

3. Client1 已经成功在 A、B 获取锁，Client2 成功在 E、D 获取锁

4. Client1 在 C 获取锁，超时时间是30s

5. 但节点 C 突然发生了时间跳跃（这是可能发生的，无论是网络同步还是人为修改），导致节

点 C 释放了锁

6. Client2 在 C 获取锁

成功获取锁的同时还会获取一个自增的 token 值，而只有最新的 token 值被允许访问互斥资源。

这个方案的问题在于分布式锁的实现逻辑被同时生成在了 DLM、客户端和互斥资源处。这个方案

最终实现的其实更像乐观锁，回顾我们在乐观锁部分谈到的版本号机制。那么问题就来了，既然

可以使用乐观锁，DLM 的意义在哪？

ZooKeeper

使用 ZooKeeper 实现共享锁和排他锁也是可能的，下面是操作方法：

Sequence 标签意味着多次对于该 node 的创建会产生顺序自增的名字。Ephemeral 标签意味着

当 Client 失去心跳（断联），这个 node 就会被删除。

ZooKeeper 自身能保证强一致性、高可用。用 ZooKeeper 实现分布式锁是相当实用的选择。

这种可线性化的 CAS 操作的实现依赖共识算法。ZooKeeper 使用了 zab 算法，而 etcd 使用了

raft。ZooKeeper 可以看做是 Google Chubby 的开源社区版，Chubby 本身使用 Pasox 算法。

总结

References

1. 创建 _locknode/lock-，附带 Sequence 和 Ephemeral 标签

2. 获取 children，检查自己是不是最小的数字

3. 如果自己是最小的，则获得锁；否则利用 watch 机制进行等待

1. 数据库的锁足以自动应付数据的并发访问。

2. 乐观锁没有死锁风险，大部分情况下性能更好。如果应用和数据之间有乐观锁协议，那么锁

服务就是不需要的。

3. 分布式锁服务很难开发，尤其要考虑到高可用。

4. 高可用性意味着容错和数据复制，容错意味着选举，这些都依赖共识算法。

5. 分布式锁的死锁预防常用租期或心跳实现。

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

本文的 Redis redlock review 和 Fencing 部分的内容来自于这篇文章。作者是 Martin

Kleppmann。

《数据密集型应用系统设计》第8、9章

作者也是 Martin Kleppmann。该书对数据系统的各个方面作了非常深入的介绍。

https://redis.io/topics/distlock/

Redis 的分布式锁算法和其 Redlock 算法。

https://zookeeper.apache.org/doc/r3.1.2/recipes.html

关于 ZooKeeper 的一切功能的使用方式。

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html
https://redis.io/topics/distlock/
https://zookeeper.apache.org/doc/r3.1.2/recipes.html

