
吐槽一些奇怪的关键字

很多程序设计语言都会有自己的关键字，有一些关键字是多语言通用的，如大家熟悉的 while,

var, let, for 等等。这些关键字一般来说，要么是英文单词，要么是单词的缩写，比如 var 就是

variable 的缩写。但有些语言，会使用一些不太符合我的审美的关键字，使得这门语言看起来多

多少少有些奇怪。

"val"-Kotlin
我首先要说的是 Kotlin 中的 val 关键字。val 不是 Kotlin 首创的，但此处谈论的对象仅仅是 Kotlin

中的 "val"。这个由3个字母组成的关键字多多少少有点奇怪：在语义上，它表示声明运行时常

量，其它语言具有类似功能的关键字可能是 "const", "let" 等等（Kotlin 也有自己的 const，但语

义不同），"val" 的问题在于它和 Kotlin 另一个同样用来声明变量的关键字 "var" 只差一个字母！

在没有代码高亮的情况下，给出数行变量和常量声明，你能一眼看出来哪些是变量哪些是常量

吗？

对于我这种佛性程序员，Kotlin 这种设计简直要了我小命了。如果你觉得上面这段代码很清晰，

很容易分辨出哪些是 val 哪些是 var，那么你看一看下面这段同样语义的 Swift 风格的代码，再进

行一下比较（你可以通过统计 var 的个数来评定哪一种更清晰）：

val a = 5
var b = 6
val c = 7
val d = 8
var e = 9
var f = 10
var g = 11
val h = 12
val i = 13
val j = 14
val k = 15
val l = 16
var m = 17
val n = 18
val o = 19

let a = 5
var b = 6
let c = 7
let d = 8
var e = 9

我不想再多讨论这个关键字了，真让眼睛难受！

"fun"和"fn"

声明函数的相关关键字有诸如 "function"(JavaScript), "func"(Swift, Golang), "fun"(ML家族)

等，这其中 "function" 是最直接——一眼就能看出语义的关键字，它在 JavaScript 中的作用不仅

是声明函数，还可以是匿名函数字面表达式的标志（就像某些语言的 lambda）；"func" 简短了一

些，倒也能让人看出所以然；"fun" 被用得很多，前面刚提过的 Kotlin 就使用 "fun" 来做函数声

明的关键字，但这个词其实是有小问题的。

首先，关键字的长度一般都在 3~5 个字符为宜，太长写起来麻烦，太短看不懂（除了像 if 这样

单词本身就只有 2 个字符的关键字）。有些语言中用 double 声明双精度浮点数，倒也无可厚非，

毕竟在像 C 这样的语言中，这样的关键字不多，而且 double 一词也很难进行缩写（continue 有

些太长了，但出现频率低）。相比起来 fun 就有点过分，因为 "fun" 本身就是一个英文单词！当

我使用 Kotlin 写的程序出了 bug，我对着源码进行修改时，看到满屏的 "fun"，仿佛受到了

Kotlin 的嘲讽！

那时候我的眼睛看到的东西：

var f = 10
var g = 11
let h = 12
let i = 13
let j = 14
let k = 15
let l = 16
var m = 17
let n = 18
let o = 19

fun XXXXXXXXXX(xxxxxxxxxxx) {
 XXXXXXXXXXXXXXXXX
 xxxxxxxxxxxxxxxxx
}

fun XXXXXX(XXX) {
 XXXXXXX
}

fun xxxxxxxxxx(xxxxxxxx) {
 xxxxxxxxx
 xxxx
 xxxxxxxxxxxxxxxx

就像这样，只有 fun 是最抢眼的。这些代码有时候甚至就像这样：

或者，你可以把颜文字脑补成#滑稽。

如果你和我一样觉得 fun 这个关键字缩写得有些过分，那么你也应当接受不了 Rust 中的 "fn" 关

键字。Rust 中的关键字大都比较短小，fn 就是一个典型。说起 fn，想必你会想起很多笔记本键

盘左下角的那个按键。Rust 和那个按键通过同样的两个字母让我有了同样不怎么美好的回忆。

Go的类型声明

这个问题可能和关键字无关，但它们别扭的程度让人抓狂。

很多语言，尤其是动态类型或者自带类型推导的语言，在声明关键字的时候会使用后置类型标注

语法。也就是说，你可以不为一个变量声明类型，交给编译器/解释器自己推导或者根本不关心其

类型；也可以手动进行限定，当你需要在声明期就确定其类型时，或者为了防止类型错误发生

时。

你可能会写出诸如这样的代码：

乍看起来也没有让人感到不适之处，可是 Go 为什么要这样设计呢？

 xxxxxxxxx
}

^_^ XXXXXXXXXX(xxxxxxxxxxx) {
 XXXXXXXXXXXXXXXXX
 xxxxxxxxxxxxxxxxx
}

^_^ XXXXXX(XXX) {
 XXXXXXX
}

^_^ xxxxxxxxxx(xxxxxxxx) {
 xxxxxxxxx
 xxxx
 xxxxxxxxxxxxxxxx
 xxxxxxxxx
}

let a = 5
var b = "Kotlin"
let c: Double = 3.0

第一条语句，到底 a 是 5 还是 int 是 5？程序员当然知道这是变量 a 的声明，但这看起来不奇怪

吗？你看看第二个函数声明语句，这个 int 到底是修饰 b 的类型还是同时修饰 a 和 b 的类型？从

语法上来说，Go 的做法肯定可以让这两条语句得到单一、确定的语义，但从人的直觉上来说，

它们就是别扭！好在大部分人写 Go 代码都会这样写代码：

吐槽了这么多，其实我并不是真的不喜欢 Kotlin。Kotlin 有它自己的设计上的问题，但不在于

此。不过 Go 语言各方面问题都很大。不少人说 Go 的诞生是历史的倒退，我赞同这种看法。改

天我可能会聊聊 Kotlin 和 Go 的其它问题。

（本文纯属吐槽+扯淡，如果它给你带来了欢乐，请出门转账。本文定价1元）

var a int = 5

func add(a, b int) {
 ...
}

a := 5

