
用-Future-处理异步逻辑-傻瓜版

用 Future 处理异步逻辑（傻瓜版）

很多编程语言（JavaScript, Rust, C#）都将 async/await 作为语言内置的异步编程接口，虽然实

现不同，对外表现也都大同小异。这里以 js 为例说明 async/await 的使用动机、使用方式。

为什么 JavaScript 没有 sleep 这样的函数？

因为 JavaScript 最初仅被用于浏览器操作 DOM，是单线程的。首先单线程程序没有 sleep

的必要，其次，设想某个程序组件调用了 sleep，将导致整个浏览器卡死在这里，是不是很恐

怖？

这篇博客最初是用来在实验室小组内10分钟为同事们普及 JavaScript Promise 编程概念而写的，

所以没有涉及任何有难度的 PL 知识和实现层面的细节。

Promise 动机
阻塞无处不在。假设我们需要请求一个网页的内容，并对这个内容进行打印输出，一个普通的同

步 API 是这个样子的：

但是网络请求是一个 IO 操作，很容易就发生阻塞。JavaScript 是单线程的，我们没有办法开一

个线程来单独处理这部分逻辑，所以我们经常看见在 JavaScript 中，这种可能阻塞的 API 都被设

计成这样：

这样，我们不需要考虑这个网页的内容什么时候真正被请求到，我们通过传递一个回调函数来表

达这样的逻辑：当这个内容被请求到后，它将作为参数执行以下逻辑。这样，fetch 操作不会阻

塞当前线程，却完成了以往多线程才能完成的任务。

let resp = fetch('www.some.resource');
let data = resp.json();
console.log(data);
// do other stuff

fetch('www.some.resource', (resp) => {
 let data = resp.json();
 console.log(data);
});

// do other stuff

fetch 的第二个参数叫 continuation，意思是某个操作的后续操作。continuation 一般都以单

参数的函数表达，参数就是表达式的求值结果。

这样的代码有一个缺点，就是可能造成回调地狱，例如我希望在请求到网页结果后，根据结果内

容再发出新的请求，代码可能变成这个样子：

这样的代码，想要换一下执行顺序，修改起来太麻烦了，读起来也很难受，错误处理也很困难。

这也是为什么后来的 API 都尽量设计成 Promise 返回值：

Promise 对象的 then 方法允许我们定义 promise 的后续操作。 then 的返回值也是一个

Promise，即包裹了回调函数的返回值的 Promise。所以前面的回调地狱就可以改写成如下形

式：

这样嵌套的函数就变成了顺序的，代码简洁多了。

await

JavaScript 提供了更加简单的操作 Promise 对象的语法糖。在上述例子中，使用 await 关键字

可以让整个程序成为近乎命令式。例如，对于一个包含了字符串的 Promise， await 操作符能

返回一个字符串：

fetch('someURL', (resp) => {
 let data = resp.json();
 fetch(data['img'], (resp) => {
 let data = resp.json();
 fetch(data['addr'], (resp) => {
 let data = resp.json();
 console.log(data);
 });
 });
});

let respPromise = fetch('someURL');
respPromise.then((resp) => {
 let data = resp.json();
 console.log(data);
});

fetch('someURL')
 .then((resp) => fetch(resp.json()['img']))
 .then((resp) => fetch(resp.json()['addr']))
 .then(console.log);

这段代码等价于：

使用 await 来重写上述回调地狱：

直觉上， await 操作就像阻塞，直到后续异步操作返回结果。但事实上， await 只是语法糖，

这段代码和上述使用 then 的代码是完全等价的。

await 操作符后的表达式如果不是 Promise，就返回表达式的值本身。

async

以上包含 await 的代码是不能直接执行的。在语言规范上， await 只能使用在 async 函数内

（top-level await 因为诸多问题被单独标准化，而且引起了很激烈的后续讨论：Top-level await

is a footgun）。上述代码要被包裹在一个函数内部：

let stringPromise = Promise.resolve('some string');
let s = await stringPromise;
console.log(s);

Promise.resolve('some string')
 .then((s) => console.log(s));
// or more succinct
Promise.resolve('some string').then(console.log);

let resp1 = await fetch('someURL');
let imgURL = resp.json()['img'];
let resp2 = await fetch(imgURL);
let dataURL = img.json()['addr'];
let resp3 = await fetch(dataURL);
let data = resp3.json();
console.log(data);

async function main() {
 let resp1 = await fetch('someURL');
 let imgURL = resp.json()['img'];
 let resp2 = await fetch(imgURL);
 let dataURL = img.json()['addr'];
 let resp3 = await fetch(dataURL);
 let data = resp3.json();
 return data;
}

https://gist.github.com/Rich-Harris/0b6f317657f5167663b493c722647221
https://gist.github.com/Rich-Harris/0b6f317657f5167663b493c722647221

为了凸显 async 的某些特点，我们去掉了打印操作，而是将结果字符串返回。async 函数和普

通的 JavaScript 函数没什么不同，可以当作普通函数直接使用。但是，有两点需要注意：

第二点很好理解，因为 async 函数是异步逻辑，返回值本来就应当是 Promise。但为什么

await 被限制在 async 函数中呢？因为“等待异步操作”的函数必须也是异步的。这也是异步函

数的一个潜在问题：传染性，一旦一个地方用了异步操作，再想变回同步就不可能了。

async 仅仅只是一个给程序员看的标记，表示这是个异步函数，它可以等待其它异步函数的

执行结果，让程序员清楚地知道这个函数在执行时需要让出线程，不能被当作同步函数使

用。理论上来说 async 没有增强语言的表达能力。

Promise 状态

Promise 对象有三个状态：Pending, Fulfilled, Rejected.

一个 Promise 被创建时是 pending 状态；执行成功后变成 fulfilled 状态，触发 resolve 回调；

执行失败后变成 rejected 状态，触发 reject 回调。例子：

当 fetch 操作失败后，就会进入 rejected 状态并打印 Failed。

Promise.all
考虑这样一个场景： urls 是一个包含了10个 URL 的数组，我们想要对每一个 URL 都执行

fetch 操作，但又不希望它们相互等待。如果 fetch 一个资源的时间是0.1s，那么同时 fetch 10个

资源的时间应当也是0.1s而不是1s。我们可以这样编写程序：

Promise.all 等待数组内所有 Promise 都变成 fulfilled 状态，就变成 fulfilled 状态，其值即为

原数组内 Promise 对应的值构成的数组。如果其中任何一个 rejected，则该 Promise 也进入

rejected 状态。

Promise.race 也等待数组，行为是对偶的。只要数组内有任何一个元素 fulfiiled，就变成

fulfilled 状态并返回该元素的值；如果所有元素都 rejected，则进入 rejected.

1. await 只能在 async 函数中使用

2. async 函数的返回值是 Promise，如果不是 Promise 会被自动包裹到 Promise

3. （其实 async 函数的类型和普通函数也有区别，并且不能使用 new 来创建对象。这已经不

重要了，现在很少有人会用函数来做构造函数）

fetch('someURL').
 .then(resp => console.log('Success'))
 .catch(err => console.log('Failed'));

let results = await Promise.all(urls.map(fetch));

await 解决 point free 的弊端

命令式编程的一个好处是几乎拥有一个无限平坦的 environment（变量名-值映射）。我们可以编

写这样的程序：

如果没有 await，程序该怎么写？

写到 ? 处就卡住了，因为此时 x 的值已经丢失，只剩下 g(x)。要想把 x 的值保留下来只能

利用数组和 Promise.all：

和 await 版本比起来非常地不方便。

模拟一个 sleep 函数
有了以上能力，写一个 sleep 函数就容易得多了。JavaScript 的运行时支持我们将任务塞到事件

循环的队列，于是我们可以利用 setTimeout 来做定时任务：

这行代码执行的1s后将会打印 Hi 字样。依据此功能，我们可以编写如下函数来模拟 sleep 的

行为了：

async main() {
 let x = await f();
 let y = await g(x);
 let z = await h(x, y);
 return z;
}

function main() {
 f()
 .then(g)
 .<?>
 }

function main() {
 return f()
 .then(x => Promise.all([x, g(x)]))
 .then(arr => h(arr[0], arr[1]));
}

setTimeout(function() {
 console.log("Hi");
}, 1000);

Promise monad

很容易看出 Promise 是一个 monad。其 then 操作正是 map 和 flatMap （在不同语言中也表

示为 bind 或是 >>= 等名字）的合体。此处不做严格证明，注意到显然 Promise.resolve 就

是 pure （也表示为 return）和 then 的类型就可以了。

什么是 monad？

monad（单子）即自函子范畴上的幺半群（雾）。

考虑到 resolve 回调的返回值如果不是 Promise 则会自动转为 Promise，所以分两种情况讨

论。

当 resolve 回调的返回值不是 Promise：

和 map 的类型一致。

当 resolve 回调的返回值是 Promise：

和 flatMap 的类型一致。

这个视角下， await 即是 do notation 中的 <- 语法糖。

动脑筋

最后来一个思考题，需要结合 Continuation 相关的知识。请问以下代码的输出是什么？

async function sleep(time) {
 return new Promise((resolve) => setTimeout(resolve, time));
}

await sleep(1000);
console.log("Hi");

then :
 {this : Promise<A>} ->
 (resolve: A -> B) ->
 Promise

then :
 {this : Promise<A>} ->
 (resolve: A -> Promise) ->
 Promise

答案？自己在电脑上跑一遍就知道了。

参考

https://tokio.rs/tokio/tutorial/async

（本文定价1元）

function conditionalPass(n: number) {
 return new Promise<void>((resolve, _reject) => {
 if (n < 4 || n > 8) {
 resolve();
 }
 });
}

async function main() {
 for (let i = 0; i < 10; i++) {
 await conditionalPass(i);
 console.log(i);
 }
}

main();

https://tokio.rs/tokio/tutorial/async

