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Figure 1: Evolution of computing platforms in the cloud - PraaS$ enables state persistence for ephemeral workers.
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Figure 2: FaaS control plane: each invocation includes
the management overhead (@).
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Table 1: Access time [ms] to remote cloud storage from
an AWS Lambda Function with 2 GiB RAM.
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Figure 3: Latency and throughput for peer-to-peer TCP
communication between Lambda functions.
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PraaS Concept Inspiration

Process POSIX process model.
Function Thread in a process.
State POSIX process memory.
Session Persistence Swapping memory pages.
Communication channel Socket in a process.
Communication model Remote memory access, TCP
Dita pliie Network data plane in Arrakis [22],
kernel bypass in RDMA.

Table 2: In PraaS, we show how the major concepts of
systems design can be used to lift the process model into
a distributed and serverless space.
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Figure 4: The process model in PraaS: ephemeral
functions are executed in the context of sessions with
shared and transient state and communication channels
for quick user access.
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Figure 5: Praa$ data plane: bypassing the control plane
allows for zero-copy invocations.
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Figure 7: PraaS vs FaaS: bypassing control plane.
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between Lambda functions and the global memory put-
get operations in PraasS.
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Table 3: Decreased costs of PraaS sessions in compari-
son to FaaS provisioned instances.
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Figure 11: Serverless functions in PraasS.
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